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Abstract

Adversarial training, in which neural networks are trained to withstands adversarial
attack examples, is widely studied to improve model robustness. Recently, many
studies also show that adversarial training can also improve the model generaliza-
tion to out-of-distribution samples. In this project, we aim to study whether we can
improve the robustness and generalization of Graph Neural Networks (GNN) via
adversarial training. The difficulty of graph adversarial training is that the graph
structure is discrete, so that traditional gradient-based attack methods cannot be
directly utilized. We aim to relax the discrete constraint of the graph structure with
continuous approximation, and apply standard adversarial training methods on
both the structure and node features.

1 Introduction

Graph Neural Networks (GNNs) have achieved remarkable success in various graph applications.
They leverage the graph structure as the computational flow, and only pass information with connected
nodes, which allows the model to integrate both node features and topological structure information.

As GNNs highly rely on the discrete graph structure to conduct message passing, they could be
vulnerable to the adversarial attack on the graph. Researchers have proposed several studies to
show by changing the graph structure by adding/removing some nodes or edges within a budget, the
performance will drop significantly. To enhance the GNN robustness against this adversarial attack, a
series of work have been proposed, including GNN-Jaccard [7], Graphdefense [6], GNNGuard [9],
etc.

Recently, many researchers have found that adding adversarial training not only enhance the model
robustness, but can also improve generalization, especially when the training dataset is scarse and
there exist out-of-distribution samples in test set. In graph domain, FLAG [4] tries to utilize PGD on
the node features as data augmentation to improve GNN generalization.

Our project aim to apply the state-of-the-art adversarial training techniques to both the node features
and graph structures, and seek whether we can improve the GNN robustness as well as generalization
performance. In addition, we want to see whether the proposed adversarial augmentation could be
benefit to contrastive learning framework.

The key challenge is that graph structure is discrete, so that most existing gradient-based perturbation
could not be directly utilized. We seek to relax the discrete property of graph structure and use a
continuous approximation to replace it (such as gumbel softmax), and then adding perturbation to
both the structure and node features simultaneously.

The plan is that we’ll firstly take one week to implement the FLAG baseline and read related papers,
then we’ll spend 3-4 weeks to implement our approach based on their framework. After that we plan
to test its generalization performance to sota GNN models on OGBN dataset for both the node and
graph classification tasks. Lastly, we’ll use some GNN attack methods in https://github.com/
DSE-MSU/DeepRobust to see whether the proposed method can also enhance robustness.
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2 Related Work

2.1 Adversarial Learning of Graph Neural Networks

So far, most of the papers about adversarial training of GNN are for security purposes. And few of
them consider perturbing the graph structure and node features together. [1] proposes a reinforcement
learning based attack method that learns the generalizable attack policy to maliciously modify the
graph structure. [10] uses a meta-gradient based training-time attack method to corrupt GNN’s
accuracy by treating the graph as a hyperparameter. GNNGuard [9] proposes a general algorithm
to defend training-time attack towards GNN by learning how to assign higher weights to edges
connecting similar nodes, while pruning edges between unrelated nodes. FLAG [4] is the first work
investigating how to use adversarial training to improve GNN’s clean accuracy. However, it only
considers perturbation in the input node feature space, but perturbation in graph topological structure
could also be important.

2.2 Adversarial Learning for Neural Language Models

While pre-trained language models can generalize to a variety of down-stream tasks, these models
are still vulnerable to adversarial attacks and could result in a drastic decrease in performance if the
researchers test them with altered test set [3]. Some recent papers propose different directions to
solve the issues. [2] designs a regularized framework to prevent overfitting given the complexity of
the pre-trained model and insufficient tuning samples by smoothness regularization. While [5] apply
an algorithm ALUM to modify embedding space and maximize the adversarial loss in training time.
Both directions observe substantial improvement on previous large scale language models, signaling
the necessity of adversarial training on existing models.

3 Method

In this project, we utilize the high-level idea of adversarial training, and aim to design an effective
GNN training algorithm that can improve both the robustness and generalization ability compared
with the standard training. In particular, different from [4] that considers perturbing the input node
features, we will apply the adversarial training in the space of graph structure, i.e., we consider to
adversarially perturb the graph structure during the training process, and train the GNN model based
on the perturbed graph in each iteration.

However, crafting the adversarial perturbation in the graph space is different from that in the input
feature space. Existing works on the graph structure based attack are typically focusing on the discrete
space: the adversarial perturbation is crafted by adding/removing edges to/from the clean graph.
Though this type of adversarial perturbation is effective from the attacker’s side, directly generalizing
it to the adversarial training may not lead to performance gain in terms of the clean accuracy. This is
because the discrete perturbation may greatly change the inherent characteristic of the graph (e.g.,
in the NLP task if we add a link between a sentence to a word "no", the meaning of this sentence
would be entirely altered). Therefore, pushing the GNN model to fit those discretely perturbed graph
may not be able to improve the clean accuracy (though this approach can potentially give higher
robustness). In order to overcome this problem, we relax the discrete constraint of the graph structure
with continuous approximation and generate adversarial perturbations in the continuous space. In
particular, let G be a given graph with edge weight being 0 or 1 (eij = 1 means that there’s an
edge connecting nodes vi and vj), we will view the G as a fully connected graph and perturb the
weights of all edges. Besides, we will control the perturbation level such that the characteristic of
the clean graph will not change a lot. Mathematically, let G = {eij}i,j∈[V ] be the clean graph and
dG = {deij}i,j∈[V ] be the adversarial perturbations (which will be generated separately at different
training epochs) with maxi,j |deij | ≤ ε. Then the GNN model will be trained using the perturbed
graph G+ dG.

In the next we will introduce the proposed graph-structure based adversarial training algorithm. In
particular, let F (θ;G, x) be the output of the GNN model given model parameter θ, input graph G
and feature x, we follow the similar idea of TRADES [8] that trains the robust models by solving the
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Algorithm 1 Graph structure based adversarial training
Input: Input features {xi}1,...,n, input graphs {Gi}i=1,...,n, input labels {yi}i=1...,n, learning rate
η
for t = 0, 1, . . . , T − 1 do

sample a mini-batch of data Bt
for i ∈ Bt do

Initialize G′i by adding small random noise to Gi
for k = 1, . . . ,K do

dG = sign
(
∇G′

i
`
(
F (θ;Gi, xi), F (θ;G

′
i, xi)

))
G′i = Proj(G′i + η · dG)

end for
end for
L(θ) = B−1

∑
i∈Bt

{
`(F (θ;Gi, xi), yi) + λ`

(
F (θ;Gi, xi), F (θ;G

′
i, xi)

)}
Calculate the stochastic gradient gt = ∇L(θt)
θt+1 = Optimizer

(
{θτ}τ=0,...,t, {gτ}τ=0,...,t

)
end for
Output: θT .

following optimization problem:

θ∗ = min
θ

1

n

n∑
i=1

{
`(F (θ;Gi, xi), yi) + λ max

dG:‖dG‖∞≤ε
`
(
F (θ;Gi, xi), F (θ;Gi + dG, xi)

)}
,

where `(a, b) be the loss function that characterizes the difference between a and b (e.g., `2 distance
or KL divergence), and λ is a tunable regularization parameter. Notably, for node classification class
we only have one fixed graph, in this case we can simply set G1 = · · · = Gn = G. In particular,
the first term in the training objective is the standard training loss (on clean data) and the second
term characterizes the distance between the outputs of GNN using clean or perturbed graph, which is
typically referred to as the consistency loss. In practice, we will apply projected sign gradient ascent
to solve the inner maximization problem and use standard optimizer (e.g., SGD or Adam) to solve
the outer minimization problem. We summarize the entire graph structure based adversarial training
procedures in Algorithm 1.

3.1 Theoretical understanding of the training objective

In this part we focus on the node classification task. We first make the following assumption on the
observed graph.

Assumption 1 There exists a ground truth graph G∗, with edge weights being continuous, that
precisely characterizes the connections between nodes. The observed graph G is a noisy version of
G∗ that satisfies ‖G−G∗‖∞ ≤ ε.

Assumption 1 is kind of strong but it gives some intuitions regarding the connection between ground-
truth and observed graphs. This assumption can be further relaxed to that using a high-probability
argument: |e∗ij − eij | ≤ ε with probability at least 1− δ, which is closer to the practice but requires a
more specific design of the adversarial training algorithm.

Now we are going to illustrate the theoretical understanding the training objective. In par-
ticular, note that G∗ is the ground-truth graph, it is natural to find a model that minimizes
n−1

∑n
i=1 `

(
F (θ;G∗, xi), yi

)
, where we use the same G∗ for all input features since the graph

is fixed in node classification tasks. Then note that the loss function `(a, b) can be viewed as the
distance between a and b. Then under Assumption 1, by triangle inequality, we can get that

`
(
F (θ;G∗, xi), yi

)
. `
(
F (θ;G, xi), yi

)
+ `
(
F (θ;G, xi), F (θ;G

∗, xi)
)

. `
(
F (θ;G, xi), yi

)
+ max
‖dG‖∞≤ε

`
(
F (θ;G, xi), F (θ;G+ dG, xi)

)
,

which is consistent with the loss function we used in Algorithm 1 (up to some constant factors).
Therefore, the proposed graph-structure based adversarial training algorithm implicitly minimizes an
upper bound of the loss on ground-truth graph. If this upper bound is sharp, we can anticipate that
Algorithm 1 can effectively improve the clean accuracy compared to standard training.
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4 Experiments

We evaluate Algorithm 1 for node classification problem. In particular, we compare the clean
accuracy and robustness of our algorithm to those achieved by JaccardGCN, SCNSVD, and standard
GCN on Cora and Pubmed dataset, which are displayed in Tables 1 and Table 2. Results show
that our algorithm can not only achieve the best clean accuracy, but can also give higher robustness
under various graph attacks. This demonstrate the superior performance of our adversarial training
algorithm.

Table 1: Node classification accuracy on Cora Dataset. Bold numbers mark the best performance

Attack Method Perturbation Ratio JaccardGCN GCNSVD GCN Ours
Clean Accuracy / 0.820 0.747 0.795 0.847

Random 0.01 0.814 0.727 0.792 0.845
Random 0.02 0.806 0.708 0.791 0.847
Random 0.04 0.792 0.642 0.792 0.846

DICE 0.01 0.807 0.726 0.796 0.846
DICE 0.02 0.803 0.695 0.791 0.844
DICE 0.04 0.777 0.644 0.782 0.842
Meta 0.05 0.815 0.740 0.790 0.847
Meta 0.10 0.811 0.717 0.793 0.842
Meta 0.15 0.810 0.720 0.791 0.840
Meta 0.20 0.808 0.707 0.780 0.838
Meta 0.25 0.810 0.708 0.776 0.831

Nettack 1 0.814 0.738 0.796 0.849
Nettack 2 0.814 0.727 0.792 0.849
Nettack 3 0.812 0.699 0.793 0.849
Nettack 4 0.808 0.691 0.794 0.844
Nettack 5 0.807 0.687 0.791 0.844

5 Conclusion and Future Work

In this project we proposed a graph-structure based adversarial training method for more accurate and
robust GNN models. In particular, the training objective in our algorithm is formulated as a linear
combination of the standard loss on clean data and a consistency loss that characterizes the output of
GNN models when using the clean graph and adversarially perturbed graph. Experimental results
demonstrate that the proposed algorithm cannot only improve the clean accuracy of the standard
GNN training algorithm, but also achieve higher robustness than other GNN adversarial training
algorithms.

There are a number of future research directions. Currently we apply the same perturbation limit for
all edges (i.e., we use a fixed level of `∞ perturbation on edges), which could be potentially improved
by exploiting more structure information of the graph. Second, it is also interesting and necessary to
see whether applying the adversarial training for both graph and the input feature can further improve
the accuracy and robustness.
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A Task Distribution Form

Table 3: Task Distribution Form

Task People
Implementing Algorithm 1 Ziniu Hu

Theoretical Analysis Difan Zou
Evaluating and Comparing Algorithms Zongyue Qin, Shanxiu He

Writing Report Difan Zou, Ziniu Hu, Zongyue Qin, Shanxiu He
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