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1 Abstract

One promising solution to the current commonsense challenges is incorporating
external commonsense knowledge in the form of knowledge bases. Several large-
scale commonsense knowledge bases have been developed, such as ConceptNet
[5], ASER [8], and ATOMIC [6]. However, limited success has been observed
when trying to utilize them as additional knowledge source to solve common-
sense tasks. Several factors may contribute to this issue. The most noted one is
the coverage problem, in that it is hard to expect a knowledge base to contain
all the knowledge needed to answer a broad range of commonsense knowledge.
In this work, however, we investigate a rather less studied problem, which we
phrase as “grounding commonsense concepts in commonsense knowledge bases”.
Commonsense concepts can be expressed in various surface forms. For example,
the concept of “X defeats Y” can be expressed as “X wins over Y” or “X is the
winner”. It is hard to use simple methods to locate the concept of “X defeats
Y” when it is expressed in a complex natural language sentence. This differs
traditionally studied problems such as information retrieval (IR) or entity link-
ing, where the focus is finding entity-centric terms in knowledge sources, such as
“President Obama”, and heuristic-based methods such as string match would
yield decent performance.

In this work, we investigate the commonsense concept grounding problem.
We take ASER and ATOMIC as example, and through human evaluation, con-
firm the severity of this issue. We also propose potential solutions to the problem
and show promising results on solving a commonsense task SocialIQA [7] using
ATOMIC.

2 Human Evaluation

2.1 ASER

ASER is a large collection of relations between events and is promised to pro-
vide good coverage of everyday events. It also provides a parsing-based way
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to locate the relevant events. We investigate if this approach can successfully
locate relevant knowledge given a problem in Winograd. Unsurprisingly, we
find it challenging to locate useful and relevant events in ASER using the cur-
rent pipeline. In the following, we conduct error analysis to illustrate reasons
contributing the issue in detail.

• Parser failure. In ASER, each event consists of a center verb and its
several arguments. We used a reasonably good parser [1] to conduct de-
pendency parse on the sentences. However, we find that the parser makes
a fair amount of mistakes, oftentimes confusing arguments of verbs. This
impacts the quality of the events we extract from raw sentences and sub-
sequently the events we are able to match in the ASER.

• Limited event patterns. When creating ASER, authors extract events
from raw text following fixed syntactic patterns. This approach limits the
kind of events we could extract from text. In addition, certain details (e.g.
adjectives) are ignored when we keep only the skeleton of the events while
in certain examples, the details are critical for solving the question.

• Simplified linking process. After extracting events (verbs and arguments),
ASER defaults to strict string matching between verbs and fuzzy string
matching between arguments to locate relevant concepts. This simple
linking process only gives us lexically related events. For more than 50%
of the events we extract from Winograd, we are unable to locate even one
related event in ASER.

• Event quality. Being automatically collected, the quality of the events
stored in ASER are lacking. Based on the subjective judgement of the
author, more than 30% of the located events are of low quality and thus
do not provide much useful information.

2.2 ATOMIC

ATOMIC is a recent large-scale knowledge base focusing on inferential relations
between social events and emotions. We take twenty questions out of the Wino-
grad Challenge and try to search in ATOMIC for knowledge potentially useful
for solving the question. During searching, we can modify the surface form of
the query without changing its semantic meaning. We find that 12 out of the
20 questions could benefit from knowledge from ATOMIC. However, the sur-
face form problem we find still exists. In Table 1, we showcase three examples
with varying difficulties of locating the relevant knowledge. In the top example,
surface clues including word match would lead us to the correct knowledge. In
the second example, it becomes much harder to arrive at the correct knowl-
edge based on heuristics. In the final example, there is almost no surface string
match between the query and the knowledge, thus a heuristic-based information
retrieval (IR) system is almost bound to fail on it.
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Winograd questions ATOMIC Knowledge
The trophy doesn’t fit into the brown
suitcase because it is too large.

PersonX wouldn’t fit. PersonX is
seen as large.

Joan made sure to thank Susan for
all the help she had received.

PersonX offers help. As a Result,
others want to thank PersonX for it.

Frank felt crushed when his longtime
rival Bill revealed that he was the
winner of the competition.

PersonX defeats PersonY’s purpose.
As a Result, others feel humili-
ated/defeated/sad.

Table 1: Examples from Winograd which could benefit from ATOMIC Knowl-
edge

3 Preliminary Solution

Having identified the problem, we present a seemingly promising solution and
present our preliminary experimental results. As revealed, locating relevant
commonsense concepts in raw text goes well beyond surface form matching and
current IR techniques are ill-equipped for this task. It requires deep contextual
understanding of the concept. Taking inspiration from recent development in
open-domain QA [4, 2, 3], we propose a trainable neural commonsense knowl-
edge retriever to locate commonsense concepts in raw text. The neural retriever
benefits from pre-trained contextual language models and is equipped to deal
with the surface form variation of commonsense concepts. We then use the
presumably more accurately retrieved commonsense knowledge to enhance a
standard question answering system.

3.1 Method

Suppose we are given a commonsense question answer pair < q, a >, and a com-
monsense knowledge base C, which is a collection of commonsense knowledge
pieces c. Our goal is to find the most relevant knowledge c∗ which could help
answering q. This setting resembles the setting of open-domain QA and we use
a recently proposed method to solve this problem. The retriever is implemented
as two separate encoders Eq and Ec. Eq encodes the query q into a dense vec-
tor q while Ec encodes the knowledge pieces c into a collection of vectors c.
Then finding the most relevant knowledge is transformed into a nearest neigh-
bor search on C given q. Then we feed the retrieved knowledge c′ along with q
into a question answering system. Notably, Eq and Ec are initialized from pre-
trained language models, and thus possess the power to project semantically
similar sentences into the same vector space.

During training, the retriever does not require annotations for which knowl-
edge c is the desired knowledge for a specific query q. Rather, the model can
automatically learn to discard irrelevant knowledge and locate useful knowledge
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through pairs of < q, a >. We refer the readers to [3] for the detailed learning
process and ways to combat the cold-start problem.

3.2 Preliminary Results

We conduct preliminary experiments on SocialIQA, a commonsense multi-choice
task targeted at social events. We choose ATOMIC as the external knowledge
source. SocialIQA is partially derived from ATOMIC, where the annotators
were asked to created natural language question and answers give a piece of
knowledge from ATOMIC. Thus the experiment is under limited settings, in
that the knowledge from ATOMIC is known to be useful for the task. However,
the questions and answers have undergone substantial rewriting and serve as a
suitable testbed for testing if the proposed model can perform semantic retrieval.

We now introduce the specification of the proposed model. Eq and Ec are
initialized from the checkpoint from [3], providing non-trivial retrieval results
at the beginning. During training, due to the computational cost issue as noted
in , we freeze Eq and fine-tune Ec and the question answering system. We also
include a baseline which receives no additional knowledge.

Results are shown in Table 2. Our system outperforms the baseline by a
small margin. We note the several strategies in [4, 2] might further help with
the results.

Model Baseline Our

Performance 57.5 58.0

Table 2: Performance of a baseline system and a system that benefits from
external knowledge.
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